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INTRODUCTION 

Experiment and theory agree [Blum, 196321 that 
e ’, L,ie solar corona is c o n : l ~ c a l l y  expanding throughout 

the solar systerii in the form of a tenuous, fully- 

ionized plasma, the s o l a r  corpuscular radiation (SCR). 

This plasma interacts with the geomagnetic field (GMF) 

to confine it within a finite cavity, the magnetosphere. 

TLAS cavity is approxim~rely 10Re (earth radius, 

Re = 6400 km) in its smallest dimension, and is separated 

from the SCR by an interface, t h e  magnetopause, which 

is less than 200 km in thickness. It a l s o  appears 

likely -- although this has not been directly observed 

as yet -- that the flow of SCR around the magnetosphere 

is modified by the presence of a stationary collisionless 

shock on the sucward (upstream) side. 

In artempting to find an approximate solution to 

the mag,-ietosphere geometry we shall employ the idealized’ 

model zif Bzard [19603, which assumes a magnetic ‘-?ole 

of moment PI (Fig. 1) immersed in a field-free plasma, 

perpendicular to the stream direction. 

of tk 

With the exception 

i:?oie singularity at tne origin of coordir.a;ss, 

:he r.- J--~.cic field potentials must satisfy Laplace’s 

,quat;,:. within the (assumd) plasma-free magnetosphere. 

ci..- .,-~rface of the magrLccosp;lere (the mzg::.- ,o?zuse - e -  

- .  - is rAc_ -:czd) t w o  boundary conditions ars to be sd;isiier;: 
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(1) the magnetic field is completely confined within the 

cavity and has no component normal to the surface; (2)  

the magmtic pressure ir,sS.dz c;?e sur face  equals the 

kinetic pzessz~c due t c  i.-,2 lc?ccct of SCX incident upon 

the surface. 

In this paper we shall develop a method which may 

be used to obtain approximate solutions to this problem. 

The method consists in finding two families of surfaces, 

ezch lariiiiy sztisfying one of t h e  t w o  Lbilndary conditions 

identically on the noon meridian contour (NMC) of the 

magnetosphcr2 (Fig. 1, l i n e  A N 3 ) .  

the two fcnilies is the desired solution. The first, 

or F-family, involves the vector potential; the second, 

or G-Gamily, involves the scalar potential of the field 

in tk.2 ii-iagetosphere. 

a series of solutions of Lzpiace's equazion a?propriate 

to t2.z gsometry and the source field. 

coefficients are determined by requiring that ttis F- 

2r.d G-abrface intersect at a number of arbitrarily 

seleccsd points on contour ANB (Fig. 1). 

The intersection of 

The potentials are expanded in 

The series 

The basic assumption of the method is that if the 

F- and G-surfaces approximately coincide over a region 

 hose dimensions are at least of the order of the magneto- 

"y""- - -kc-- r ' i m o n c i  --...-L."-w-.I, n n c  +her 75py aFprnxfrnatoly coinci&e 

/ i tF .  -~-,e actual free b;,. -zry in that region. F;rther- 
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an approximate solution for the fields. 

the shape of the entire magnetosphere numerically and 

verify t he  accuzacy with which the approximation satisfies 

We then calculate 

the tu3ur;:iar;;. sa,r.dl~",ons D 

This method has been compared, in two dimensions, 

with the exact solutions of Hurley [1961a_,h] and has 

been shown to give good approximations (within a few 

per cent) of Hurley's results, without the necessity of 

any furthcr zssurc?tions L31ua1, fS53b_l. r 

T h s  cc:+lx.merit condicion m y  be expressed as a 

Eeumana CG:-.~.LC~OII on the magnetic scalar Totential: 

an/an = o ,. (1) 

where n is in the direction normal to the  surface of 

the magnetosphere. 

from either 8 scalar or a vector potential: 

The magnetic field, 11, may be derived 

- H = - grad R = curl A . 
Dungey c1958, Chap. 8 1  has shown th2:t in an ideal, 

stea<-/-state case of SCR impinging upon a one-dimensional, 

dipold-like field we expect the plasma particles to be 

specu'iarly reflected from rhe magnetopause. 

2zes;Lx. ,;,iition on t 5 e  boucdary is 

Thus the 
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where no is the density of the SCR,  V is its velocity, 

m the mass of a hydrogen atom, and x the angle the 
ificident plasrriz s t rea ia  makes with the normal to the 

surface (Fig. 1). Eawever, conslGcring the great magneto- 

hydrodynamic activity found in the region of the magneto- 

pause it might be more correct to assume diffuse reflection, 

or even no reflection at all. Therefore, we shall take 

our second boundary condition to be 

2 2 2 2 H* = B cos x , B = knomv ( 4 )  

where k is a constant, 1 k 2 2. The choice of k will 

have only a small effect on the dimensions of the magneto- 

sphere, sincs H - i / ' L  . 3 in hypersonic flow theory this 

conditim <3q. ( 4 ) )  is commonly known as Newton's 

conditlen (k = 1) and has been shown empirically to 

hold very closely for gaseous flow around the blunt 

body behind a detached shock wave [Hayes and Probstein, 

1959, Chap. 1112, so that this condition should remain 

apprcximately valid even if there does exist a detached 

shock wave upstream of. the magnetosphere. 

Tnis idealized three-dimensional free-boundary 

~zo51c:..hzs thus far not been solved; our goal is to 

-2velcj an approximation which may ultimately be 
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.-qn.- 
- U ~ J V . \  ?ZXZ3I>.N CONTOUR y;.lz przTr?c> - -  

To describe t;iis problern we shall employ spherical 

coordinates (rye,$) as shown in Fig. 1. Note that the 

magnetic dipole is taken parallel to the x-axis, which 

it is customary to show pointing north; in our case, 

therefore, x points south. The S C R  is moving in the 

nezzcive z-direction. ::e c : : ~ c c ~  tke correct solution 
- .  io ii^lcLLuc, c. . .bI-L-~.  , - \ ,  .._._ ,. -:.G~LL 313 LLCZLCU 

on the NMC on the dayside of the magnetosphere. 

convenience , the term "noon meridian contour1' will be 
understood to include t h e  midnight meridian a s  well. 

The s c a l a r  potential, Q ,  must satisfy Laplace's 

For 

equation : (5) 

and a cor~es?onding vector potential, A, can be derived 
from the scalar W(r,0,+): 

If we denote the undisturbed components of the 

potei-itials by the subscript (,) and the components 

induced by the GMF-SCR interaction by primes ( $ ) ,  the 

geomagnetic dipole potentials are 

R c! = < x : y 2 )  sin 0 cos Q ;  
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where 2 2r.a 2 arc LJXZ v::zc:s in ;;-,e S G T . ~  (s d i r e c t i o n s ,  

and r i s  the  rad ius  vec tor .  

The induced s c a l a r  p o t e n t i a l ,  R ' ,  m u s t  also satisfy 

Laplace's  equat ion,  and because i t  cannot be s ingu la r  

wi th in  the  zagnesosphe~2 we sz:lcc; t h e  form 
p m<n 

n l = l  5 3 2rL-I -en - pc n (cos 6) cos m(i ,  m odd; (5; 
n = l  m = i  

m P, (cos e )  i s  the associated Legendre polynomial. The 

cos mQ! dependence is determli-.ed by the f a c t  t h a t  t h e  

problem i s  syrnrnctric about t n e  xz-plane. We a l s o  argue 

thar i1-1 ,..L  quat to rial p l x x  s y m c t r y  requires E = H 2. 
The ot?>;c components of g w i l l  vanish i d e n t i c a l l y  .;I 

i s  an oid i n t e g e r ;  i n  t ha t  case cos (mn/2) = 0. 

TX induced magnetic f i e l d  may a l s o  be derived 

from Che vec tc r  p o t e n t i a l  

'1 = I, L *nm R" PE (cos 6 )  cos m%, rn odd 
n = l  m=l 

snm = - ( n + l )  

Yext w e  consider f i e l d s  and potenc ia l s  on the  WAC, 

where che magnetic fisld r u s t ,  by symmetry, l i e  i n  the 

.3on ncr id i an  plane.  By _ci r in i t ion  ic i s  clear t i l d t  

";. ( 4 )  becomes 2 5 ' 
cr;s x = <cix/<;j2 (see FL u - 1 5  
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where dQ rep resen t s  t he  change i n  R along the NMC. Thus, 

if wc c s n s t x c t  a contour i n  s p c e ,  

(L3j 

(Q = 0) 

where KL &;^e a r b i t r z r y  conscafits, 0, i s  t h c  ncutral p o i n t ,  

and K- r- 0 ( s i n c e  P z  (1) = 0 for n r l ) ,  we can see  t h a t  

t h e  cor:>snent of = -vQ - t angen t i a l  t o  t h i s  contour has  

the prc;;xrty 

( 1 4 )  
2 2 2 
H S = i3 COS x. 

I f  we could,  i n  some manner, i n su re  t h a t  t he  normal 

compor,ent of 

E 5- 3 , and G would represent t he  NNC. Although G i s  

a uniq je ly  def ined functici-i of s2 w e  cannot be sure  t h a t  

;IT: i s  the  only contour on w?.ick G would s a t i s f y  the  

houndary condi t ions .  However, f o r  t h e  purpose of t h i s  

on t h e  G-contour would vanish,  then 

-- ZXYCC;~  0- y A 7 3  s h a l l  assume t h a t  ',t is. 

. - -, . , 
-A _ _  -,-.-& s t e p  i s  t o  f i -d  sme ? r e s c r i p t i o n  which 



In order to f i i l d  ;; sul~ablc representation for F 

i n t o  Z q .  (15 ) .  By symmetry, i f  F = F ( r , B , Q ) ,  then w e  

have E+ = 0 on t h e  WIG, s o  t h a t  Z q .  (15) reduces t o  
3 

for P = 0. I f  w e  set  

F(r,8,@) = r cos 6 aW/aO - C = 0 

and s u b s t i t u t e  i n t o  Eq.  (17), w e  f i n d  

If t h e  r e p r e s e n t a t l m  suggested i n  E q .  (18) i s  t o  

s a t i s f y  Eq.  (ijj, wz s . ? ~ ~ ~ ~  r led ,  t z i  im-,osz a x t h e r  cogd t t ion  1 - 7  



identically zero for a l l  (:,a) as long as Q = 0. We 

shall terz this the "conzxc .ce  coi?di t io~. ,  We note 

that !TO z2~s.aCy s n t i s f i z s  t h i s  condi t ion.  X f  w e  sub- 

stituce f o r  W' from E+ (10) t h e  congruence condition 

on W reduces to 

7 -  f o r  every v a l u e  of il. 

the flexibility of our oziginal xzpresentation, Eq.  ( 9 ) ,  

as a means ~f description, we s.cill 'nzve 

,k-cli.o;lgk we have thus reduced 

undetermined 

coefficieats A,, at our dis?osal .  
- -  
if we normalize to ~';.,e neutral point radius, R, 

the equations of the F znd G contours become (0 = 0) 

(22 )  
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The F-contour wzs dzi-Lv& by r equ i r ing  i t  t o  be 

L Laagentla1 t o  t h e  field ll7,e i n  t h e  noon rreridian plane;  

c k c  G-conto-~r was C ~ : ; - I C ~  by zzq-~Lzi:>* 3 rhc magnetic 

field zoq;or,ent ZLF.;Z~-.::C~ ZJ ic LO szcisfy t he  pressure 

condi t icn.  If ws can evcl-xze t;ie parsxe ters  so a s  t o  

make i.’ and G congruent,  t P . 2 ~  on the  r e s u l t i n g  contour 

rhe boundary condi t ions Zqs .  (I), ( 4 )  a r e  s a t i s f i e d .  

IZ shoulc ae noted rha t  Ln  :he process we would a l s o  be 

specifyirLg :he magr,ecic ?a:er.t lcis mzrywb.zIre, not only 

i n  t h e  xz-?lar?e. Usir.g t>.zse pozznt ia l s  one can then 

construct the f u l l  f r 2 e  bc-.z.dazy i n  t h r e e  dimensions, 

a s  w e  sha l l  c , ,ocscra te .  

- .  

. -, 

Xext wz terive the  a c x i l i s r y  conditions which must 

hold a t  C i - ~ e  n e u t r a l  poinc: 

so thaL 

the  G-cuve must 3e continuous,  



for 6 = 

t o t a l  I W ~ L - , ~ : ~ C  f i e l d  a t  N v ~ n i s h c s ,  and t h a t  t he  angle  

of ir;cider.ce x = n/2 ,  

This implies ;kat the z-component of t h e  

. .  
-i L”..,,clcn, O r  -,I- X / S z  = 0 ,  ,:<Lees to 

n,m (27)  

fo r  t =  3 S o  

to E = 0 a t  N .  

We can show that th i s  condi t ion i s  equivalent  

Since t h e  ywcgnetic $;:;i! must, by symmetry, have 

r.0 y-coizponent on the N?2, i f  E 2 = 0 ,  then [H,and,br ’o$3x’ = 0. 

~f F = ; COS e a w / a e ,  thep. 

r 3 
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but 

c 7 7  -?-er35arzJ we must add cne m r e  auxiliary condition co 

i~-,suzc z h c  the F-contour is horizontal aC N: 



(cos e ) .  ;Ti 
and z:-..e ser ies  expansion for P, 

Tk,e r equ i r e ren t  that G-(pCJC', = 0 i s  i d e n t i c s l l y  
_ -  ..- -. -7 / i ,\ 

s z t i s F L e d ;  w e  can a l s o  show thzt O L / G J  = 0 :cmcica,-y 

:or 6 = 0. 

cher, 

Since t h i s  p o i n c  sztisfies F = p,aW/'oG = 0 ,  

-- 2 
cry a K ( 3 6 )  - -  . a 6  - 2- e 

.?urt:.srnore, the congruence conc'lcion, 



... 

n 

zero otherwise,  

We now wish t o  ma:ie ? znd G coincide a s  c1oszLy as  

poss ib le  orL :he assumptizn ;ha: chz r e s u l t i n g  curves 

w i l l ,  8:  I c 2 . s ~  over some s l z a b l e  ----' L r = g ~ o n ,  be a gooii 

a p p r o x i x c i o n  t o  the  ( a s s ~ z d )  ur.ique so lu t ion  bhich 

l i e s  i n  boch f a m i l i e s ,  F B ~ G  G ,  2 s  defined i n  Z q s .  (IS) 

and (i8). I n  Eqso (21) ~ k r e  ai? 2+ vfp+1)/2 ux-ikz-.o~~.~is, 

condirio:., E q .  (ZO), yie i i s  (p-l..) independent equations 

; i t  + =  _i_ - LlcriticalLy s a t i s f i z d  f o r  n = 1); t h e r e  E r e  . 1 1  

szvei-; a u x i l i a r y  equations,  ( 2 3 j ,  ( 2 4 ) ,  (271, (28>, ( 3 3 ) ,  



tL-,s F- and G-contours c s  linzerszc; 2:  p ( s - l ) / 2  - 2 

.-. 

selected vzlues of 6 (we k v e  z l ~ z z 6 y  required inter- 

seccion at: 6 = 0 ,  ;ne 5 = \ I .  ,, _ _ -  L -.s.i;~:? 'Ls;-.zre is no 

sure and cz r~z . ; ?  ' b  

t r a x c e n d z n i a l  e q ~ c t l c ~ x  , ;i c:.: d L ; - - . s  T.,; L.-. 2 ~ o s d  

approximation to the szllu;l;=r! ::-.zzz ,-,:e ;nzz'r,ocs ( e . g . ,  

Newton-Raphson) which convezge to the  right answers. 

A~ construct such a good approsination one begins with 

s a a l i  L,-,~ZS of u f o r  which z l - . ~  Z ~ U Z . C I ~ G T ; S  are b W a  , . - - >  

and gradually bullds c? ss,~tio;-.s f ~ i -  larger 2% &az>er  

p e  This n e t h o d  is i1lcs;rEiel In lczail in [ B l i x ~ ;  1,53h]. 

- .  - \  

-.-,--- .,cb--.- K 
.>L-  .. . - L L ~ . S  GI - r  

T 

In ~k .2  Iawzst-orser repress;lLationy p = 1, c; ,~ 

system appzz.-s over-s?eci:iied. Eowever, as we shali 

see in the  XZSY; sectici:, c:-.;;e congruence condition and 

Eq.  (27) Er2 identically sz ; r i sTie i ,  while Eq.  (39) is 

not independent of the zmzxii;-,g Luciliary equations. . .  

Therefore, the systern is solill;- for 9 = 1. 

FIXST CXZR CALCULATLOXS -- SCSS MSXiDIAN CONTOUR 

Les LS consider the f i r s t - o - - : ~ - -  &LL.i expansion f o r  r?,e 

indues: ;atentizls, and ~pply Lhr3 method of the p r e -  

cedi:-., s<ccion. Then 

0' = - 3 A  r sin8 cos31 I;?' = A-ir L L  sine cos@ . (40 )  -̂ 11 



of t h e  confinexent and pressure contours a r e  

Although we might expect such a meager r e p r e s e n t a t i o n  

g r e a t l y  overspec i f ied  by a l l  t h e  condi t ions  der ived  i n  the  

precZaiy.2 ~ e ~ t i ~ : i ,  t h i s  d o z s  ;ICE pzav2 to b e  t3.2 c&sc.  

c o n d i c ~ a ~ , ~  a r e  sa t i s fLed  by zb.2 C ~ G ~ C Z  o r  

t o  be 

3 .  These 

so  t h z b  the  height  of the nagnetosphere approaches i n  asymp- 

L J t e ,  : t =  6R/5 as z goes t o  - 03 . Howzver, the dive-gence 

between F and G does not  a l low u s  t o  r e l y  on GTas 2 v a l i d  

u r r -  ~ - m r n ~ i r n a t i o n .  - - -  Therefore ,  we must employ a d i f f e r e n t  point  

+ 

of Vi2TY.J I n  G Z d e r  to 0U;T apprG:=. c. 3wn s t r 2 < -  -3 v :- 

s 
- -  - 7  _- - - -:.: p : i I c .  ,._ I ^  j - .zLL c h  .-. - . -  Ls: sf L h e  Irdcicccd 

L -  . -  
-- T. - - -  

~ --, r - 
L.. C _ L . . .  I .  

.-_ . . ~ -  - -.-- - -- - c _._. -,JC - -  



- :.? - 

s i s t e r , t  wizh the cozfinemcnt condi t ion ,  H S = H. 

( 4 4 )  

T -  

OP. t h e  G-s.c-rfacc. A L  E.-.L sL:;’ace ;s : J r~ :c i se ly  c o r r e c t ,  tken 

the 7ressure  r a t i o  should be Ldenticaliy un i ty  everywhere. 

I f  v 2  i s  c lose  t o  un i ty  clver a s i g n i f i c a n t  region ( e . g .  

comparable t o  E i ) ,  

..tL., ..- L. b-&---.- LA)A,-u...LL-L~u.L ccI zct i la l  sci:;u.=~. A..L- e- 

f o r e ,  we extend tke contour docr.scresm by assuming that 

then we :-,ave reason t o  be l ieve  that i t  
1 F  - -  . .-?. r-7-  _- - 

- <  , . , . -  _ -  . . -  



-18- 

I n  order  t o  s a t i s f y  the f i r s t  equation of ( 4 6 )  we 

a r b i t r a r i l y  s e l e c t  kR, k’R t o  be the f i r s t  two zeros  of J1: 

ZCR = 3 . 8 3 1 7  ; 1c’R = 7.0156 . (“7) 
- 
FC order  t o  d e r e m i n c  id,:;‘ we ~ t 2  t h e  r e l a t i o n  

(h2n/Axaz) N = 0 3 ( 4 8 )  

which i s  der ived by applying L’Hospi ta l ’ s  Rule t o  the in -  

determinate  r a t i o  (an/,ax),/(an/az), and i n s u r e s  t h a t  t h e  

pressure  r a t i o  i s  u n i t y  a t  t h e  n e u t r a l  po in t  [where dz/dx=O). 

The r e s u l t i n g  equations a r e  solved by 

-2k$R 
B =  - , B‘ = ( 4 9 )  

2k’pR 

3k(k‘-k) Jo(k> 3k ’ (k  ’ -k) Jo ( k ’ ) 

The consequent F and G s c r f aces  a r e  depic ted  i n  Fig.  3 along 

wi th  vzlxes  of the pressure r a t i o  a t  s e l e c t e d  po in t s .  It can 

be see:-, :bt i t  i s  very c lose  t o  u n i t y  u n t i l  z/R :; - 2.5 

when i t  becomes l a r g e r  than 1.10.  This i s  due t o  our r e t e n t i o n  

of t h e  o r i g i n a l  d ipole  p o t e n t i a l  i n  the  downstream repre-  

s en tac lon  of G ;  i n  f a c t ,  t he  pressure  r a t i o  should approach 

i n f i n i t y  a s  2-- 03 . However, t h e  magnetic f i e l d  a t  z / R  = -3 .0 

i s  only 1% of t h e  f i e l d  a t  the  apex of t h e  magnetosphere, 

which i s  t h e  reg ion  of g r e a t e s t  i n t e r e s t .  

I f  we assume e l a s t i c  r e f l e c t i o n  from t h e  magnetopause, . 

then  the customary assumption of doubling t h e  o r i g i n a l  f i e l d  

ac ciL> ,?ex y i e l d s  a value of ro= 9.65 Re (Mariner -L dacsa, 
.. - 
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Weugebauer and Snyder, 1962). This i s  somewhat smaller  

than  most experimental es t imates ;  explanat ions have been 

suggested by means of a pos tu la ted  r i n g  c u r r e n t .  However, 

t h e  t r i p l i n g  of the  f i e l d  y i e l d s  

r = 1 1 . 2  Re 0 J (50) 

which i s  i n  b e t t e r  agree;;lent wich the r e s u l t s  of !!he Ex- 

p i o i c r  XIi probe, (Czhi.11 sild Arrilzecn, 1963) .  This probe 

measured t h e  r ad ius  of t h e  magnetosphere t o  be 10.5 - 11.5 Re 

a t  about 10 from the  apex on magnet ical ly  q u i e t  days. 

Furthermore, our  pred ic ted  f i e l d  of 67y i s  i n  agreement with 

t h e  measured f i e l d  of 7 0 ~ .  This  i s  the  r eg ion  where we would 

0 

expect ta f ind  t h e  bes t  agreement, assuming our  mathematical 

model of t h e  i n t e r a c t i o n  t o  be c o r r e c t .  
0 On t h e  downstream extension a t  0=140 t h i s  approximation 

p r e d i c t s  
r = 22.4 Re > 

i n  good agreement wi th  t h e  measurements of Explorer X ,  which 

found t h e  i n t e r f a c e  t o  be a t  about 22 .2  Re.  

agreement must be t r e a t e d  with caut ion .  For one th ing ,  t h e  

p red ic t ed  magnetic f i e l d  i s  only 4 . 5 ~ ,  i n s t ead  of the  measured 

v, l u e  of 30y; furthermore t h e  i d e a l i z e d  model does not  account 

f o r  tnermal pressure ,  which i s  around 1/100 of the k i n e t i c  

This apparent 

-2ssu-e and would tend t o  make the  dimensions of t h e  a c t u a l  

-- l . ,~gnetosphere  evtfiyWLIrL -----L--- p - c 1 - 1 1 ~ 7 -  d L L I u - - - -  than those of the  idea l i zed  

model. Th i s  e f f e c t  would be most pronounced on t n e  down- 

stream s ide  wnere t h e  f i e l d  i s  ~ e a k .  
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-. 

Furthermore, t h e r e  i s  the  quest ion of how w e l l  t h i s  

f i r s t - o r d e r  c a l c u l a t i o n  approximates t h e  s o l u t i o n  t o  t h e  

i d e a l i z e d  free-boundary problem. The boundary condi t ions  

a r e  reasonably c o n s i s t e n t  over a l a rge  reg ion  from r=R 

t o  r=-3R which leads u s  t o  be l i eve  t h a t  t h i s  c o n s t i t u t e s  

a c r e d i t a b l e  approximation, p a r t i c u l a r l y  i n  r e s p e c t  of the  

shape of t h e  magnetosphere, excluding t h e  r eg ion  around 

the  n e u t r z l  point .  Concerning the s i z e  of t h e  magnetosphere, 

P r o f e s s o r  Levere t t  Davis has noted t h a t  i f  we  eva lua te  the  

l i n e  i n t e g r a l  (Ampere's Law) 

i d a 4  

A 

I 

@.ds = 0 

over  t h e  c o r r e c t  contour C i n  t h e  xz-plane shown i n  F ig .4  

we  f i n d ,  us ing  Eq.  (12 ) ,  

(52) 

t h e r e f  o r e ,  
xco = 2XN (53) 

- 
I t  i s  clear t h a t  Fig.  3 i s  not i n  good agreeinent with 

Eq. ( 2 3 ) ,  s ince  x, = 4'xN/3. Generally t h e  p o s i t i o n  of t he  

'asymptote  i s  r a t h e r  s e n s i t i v e  t o  the  pos i t io i l  of the  n s u t r a l  

2 o i n t .  

upstream of i t ,  we would expect a l a rge  e r r o r  t o  show up i n  

che asymptote. 

r h e  i d e a l i z e d  f r e e  boundary problem w i l l  show 2R/3 < xN < R. 

Since our n e u t r a l  po in t  i s  on t h e  x-axis, r a t h e r  than 

It i s  bel ieved t h a r  rshe exact szrliitior: C c  
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If one arbitrarily took xN = 5R/6, this would imply BN 

in the range of 56' to 90°. This is in accord with the 

most recent calculations of Dr. Gilbert Mead of Goddard 

Space Flight Center (private communication) who finds 

xa, = 1.70R, ON = 71' and the apex radius zo = 0.934R 

by llieans of the fourth iteration of Beard's approximation 

(Beard, 1960, Beard and Jenkins, 1962). 

If Newton's (pressure) condition is used, then our 
116. predicted lengths must be multiplied by (2 )  

Coordinates of selected points on the downstream 

extension are given in Table I.' Computations were per- 

formed by using Newton's method to calculate x for each . 

given z; final increments 6x were always less than 0.0001 

in the normalized system. 

TABLE I 

COORDINATES OF DOWNSTREAM EXTENSION, GMF-SCR INTERACTION 

Z x Z 

0.000 1.000 -1.000 1.2?4 
-0.100 I. 005 -1.200 1.250 
-G. 260 1.021 -1.400 1.269 
-0.300 1.046 -1.600 1.283 
- 1;. 400 1.077 -1.800 1.293 
-d.500 1.108 -2.000 1.301 
-0.600 1.138 -2.500 1.314 
-0.800 1.188 -3.000 L.3LL 

1 3-1 
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THE MAGNETOSPHEKE 

-. 

The next step in our method is the calculation of 

the magnetopause in three dimensions. This can be done, 

in principle, by integrating the first-order partial 

differential equation given by the pressure condition 

on the boundary: 

where f(r) = 0 is the equation of rhe magnetopause. In . 

the process of determining the contours F and G in the 

noon meridian plane we have also determined an approxi- 

mation to the induced potential, which we have reason 

to believe valid near the apex and worsening as we go 

downstream. 

approximation, we shall assume that fi in Eq. ( 5 4 )  is the 

magi-etic field derived by means of the first-order cal- 

culation of the preceding section. 

Bearing in .mind rhe limitations of the 

In spherical coordinates, normalized t o  R, the com- 

ponents of = B/P, are: 

h, = (2/3)(~-~-1) sin 8 cos Q 

he = -(1/3)(pW3+2) cos 8 cos Q 

h, = (1/3)(po3+2> sin Q ( 5 5 )  

2 2 2 h2 = h P + h g  + h$ = (1/9)[(2+~-~)~ - 3 sin28cos ' P ( ~ P ' ~ -  P ' ~ ) ] .  
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To the original dipole field we have added the uniform 

induced fieid in the x-directionlpreviously 

If we express the surface in Cartesian coordinates, 

Eq. ( 5 4 )  takes on the relatively simple form of the 

eikonal equation: 

f(x,y,z)* = 2 - z(x,y) = 0 (56) 

and since xf ='- bZ/ax - aZ/ay i, + k, then.Eq. ( 5 4 )  

becomes 

h2 = 1/(1 + p2 + q2) 

P2 + q = h-2 - 1 2  0 , (58) 

(57) 

where we define 

p = az/ax ; q = az/ay . ( 5 9 )  

Given an equation such as Eq. ( 5 9 )  which can be expressed 

explicitly by the first-order partial differential equation 

F(x,Y,z,P,q) = 0 > 

one may construct a set of simultaneous ordinary differ- 

ential equations (Courant, 1962, Chap. 11) 

dx/dt = aF/ap ; dy/dt = aF/aq ; (60) 
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, 

, 

These equations yield a family of curves (x(t) ,y(t) ,z(t)], 

known as Ilcharacteristics:' which lie in the desired 

integral surface, f(x,y,z) = 0, determined by the equation 

F(x,y,z,p,q) = 0, plus appropriate boundary conditions. 

Thus, by constructing tnis family of curves we have also 

constructed the surface, f. 

There is a well-known theorem (Courant, 1962, pp. 75- 

8 4 )  which states that given some initial curve on the 

integral surface which is not a characteristic, one can 
construct the required surface as a unique set of the 

characteristic strips which pass through the initial 

curve. Xn our case we know the initial curve to be the 

upstream part of the NMC, and also that q = 0 and y = 0. 

However, simple substitution shows that this curve is a 
characteristic, and of itself does not determine a a 
integral surface of Eq. (58). However, we may adduce 

another condition from symmetry: p = 0 on the (equatorial) 

contour which lies in the intersection of the magnetosphere 

and the plane + = n/2 ,  since the magnetosphere gradient 

should have no x-component there. If we substitute the 

conditions x = 0, p = 0 into the family of characteristic 

equations, we find that this curve a l s o  is a characteristic 

and satisfies the equation 

dz/dy = -(h" - l)ii2 (61) 

Solutions of this equation exist; however, at the iniciaA 
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point (x,y,z) = ( O , ' O , l )  the rad,cal vanishes, so we may 

not immediately assume the solution unique at that point. - 
Since all characteristic contours describing the 

desired surface must lie between the NMC and the equatorial 

contour, they must all pass through the apex. This type 

of problem is described by Courant (1962, p. 83) as "A 

particular limiting case of the initial value problem, 

the case wherethe initial curve degenerates into a point 

..... All characteristic curves throuEh a fixed point P 

of x,y.u - [our z l  space form an integral surface.ff Such 

a surface is known as an  integral conoid. It is unique, 

although it may be a surface of several sheets. 

idealized magnetosphere must be such a surface regardless 

of the representation of h. 

The 

To avoid difficulty in applying boundary conditions 

to the characteristics passing through the apex we shall 

employ an approximation. We express Eq. (56) in spherical 

coordinates 

f ( p , 8 , * )  = p - P ( 0 , P )  = 0 .  ; 

-. 
The symmetry requirement, p = 0 for x = 0 and q = 

for y = 0, may be expressed by 

0 

csc e ( a p / a + )  = 0 for * = 0, n/2 . ( 6 3 )  
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Therefore, we may try to integrate the surface by com- 

puting the curves P = ~ ( 0 , @ ~ )  for a set of fixed G o ,  

starting at tne apex, 8 = 0, and ignoring the term 

a p / b Q  in Eq. (62).  When we have generated an integral 

surface in this way, we can then evaluate b p / b @  num- 

erically between contours in order to see how much 

of the surface so calculated is consistent with the 

approximation. We shall arbitrarily set 

csc2e (ap/am)2 5 0.04 ( p 2  + (ap/ae)2> ( 6 4 )  

as the Limit of the approximation, so that the right 

side of the differential equation 

never differs by more than 2% from the right side of Eq. (62). 

If we fix Q = go then we have b p / b 6  -. dp/d0 along 
the contour which is the intersection of the magneto- 

sphere and the plane of constant @. 
Eq. (65) numerically in this way, contour-by-oontour, 

it is possible to generate approximacely two-thirds of 

the upstream part of the magnetosphere before the 

criterion (64)  is violated. This region is bounded by 

the heavy dashed line in Figs. 5 and 6 .  

boundary to the plane z = 0 we derive the szrface f r l r m  

the characteristic equations starting from the dashed 

boundary as our initial, noncharacteristic curve. 

By integrating 

From this 



0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0. O*;3 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1,6 

1.000 
1.OOO 
1.OOO ' 

1.OOO 
1.000 
1.000 
1.001 
1.001 
1.001 
1.002 
1.003 
1.004 
1.005 
1.007 
1.011 
1 . 020 

B. $d = 0.2 radians 

0.1' 
0.2 
0.3 
0.4 - 
0.5 
0.6 
0.7 
0.8 
0-9 
1.0 
1.1 
1.2 
1.3 
1.4 
1*5 
1.6 

1.000 
1.000 
1.000 
1.001 
1.001 
1.002 
1.003 
1 005 
1.007 
1.009 
1. 012 
1 015 
1.021 
1.028 
1.041 
1.062 

0.00 
0.02 
0.02 
0.02 
0.05 
0.08 
0.14 
0.23 
0.39 
0.62 
1.03 
1.80 
3.39 
7-13 

39 53 
17.80 

0.00 
0.01 
0.03 
0.08 
0.17 
0.31 
0.52 
0.88 
1.44 
2.34 
3.79 
6.32 
10.91 
19: 49 
34-71 
55.a 

C. @ - 0.3 radians 

e P 4 f ( O ) ,  

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

1.000 
1.000 
1.001 
1.002 
1.004 
1.006 , 

1.008 
1.011 
1.015 
1.020 
1.026 
1.034 
1.045 
1.061 
1.084 
1.118 

0.01 
0.03 
0.12 
0.22 
0.40 ' 

0.69 
1.13 
l.% 
2.97 
4.71 
7.42 
11.71 
18.54 
29.06 
43 85 
61.18 

D. $d = 0.4 radians 

0.1 
0.2 
0.3 
0.4 
0.3 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 ' 

1.4 
1.5 
1.6 

1. a00 
1.. 00- 
1.002 
1.004 
1.w: 
1.010 
1.014 
1.020 
1.026 
1 035 

1 059 
1.045 

1 . 078 
1 187 

1.103 
1.137 

0.09 
0.12 
0.20 
0.38 
0.61- 

1.90 
3.04 
4.74 
7.27 
11.04 
16.51 
24.30 
34 76 
47 45 
60.16 

~ - -  
1.13 



Table 2 (cont.) . 

E. fi = 0.5 radians 

8 P 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1 . 3  
1.4 
1.5 
1.6 

1.000 
1.001 
1.003 
1.006 
1.010 ' 

1.016 
1.022 
1.030 
1.040 
1.053'\ 
1.069 
1.089 
1.116 
1.151 
1.199 0 

1.266 

F. $ = 0.6 radians 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 , 

1- 3 
1.4 
1.5 ', 

1.6 , 

1.000 
1.002 
1.005 
1.009 
1.015 
1.022 
1.031 
1.042 
1.056 
1.074 
1 095 
1.123 
1.158 
1.205 . 

1.267 
1.350 

0.08 
0.17 
0.27 
0.51 
0.94 . 

2.71 
4.22 

1.63 

6.47 
9.62 
14.04 
20.02 
27.77 
37- 16 
47.13 
55.38 

1 

0.13 
0.27 
0.38 
0.75 
1.28 
2.13 
3.45 
5.30 
7.92 
11.46 
16.14 
22.09 
29.21 
37.04 
44.38 
49.25 

G. $ = 0.7 radians 

8 P 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

1.000 
1.003 
1.007 
1.012 
1.019 
1.029 
1.041 
1. Oyj 
1.074 
1.096 
1.124 
1- 159 
1.204 
1.262 
1.337 
1.439 

H. - 0.8 radians 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 

1.001 
1.004 
1.008 

, 1.015 
1.025 
1.036 
1.051 
1.059 
1.092 
1.119 
1.154 

I 1.197 
1.251 
1.319 
1.409 
1 527 

0.13 
0.34 
0.52 
0.97 ' 

1.62 , 

2.61 
4.11 
6.19 
9.01 
12.68. 
17-30 
22.82 
29.00 
35.17 
40.29 
42.90 

0.15 

0.67 

1.85 ' 

4.59 
6-78 
9.63 
13.24 
17.52 . 
22.39 
27- 50 
32.17 

0.34 

1.07 

3.00 

35 56 
36.72 



Table 2 (cont. ) 

I. j 4  9 0.9 radians K. = 1.1 radians 

e P 8 P 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 

1.001 . 
1.004 
1.010 
1.019 
1.030 
1.014 
1.062 
1.083 
1.110 -, 
1.143 
1.183 
1.234 

0.21 
0.38 
0.77 
1.18 
2.03 
3.40 
4.84 
7.02 
9.75 
13.08 
16. go 
21.03 
25.08 
28.50 
30.63 
30.88 

0.1 
0.2 
0 . 3  
0.4 
0.5 
0.6 
0.7 
0.8 

, 0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

1.001 
1.006 
1.014 
1.025 
1.039 
1.058 
1.081 
1.110 
1.144 
1.187 
1.238 
1.302 
1.380 
1.477 
1.601 
1,761 

0.35 
0.56 
0.79 
1.31 
2.03 
3.12 
4.56 
6.34 
8.51 
11.01 
13.66 
16.27 
18.57 
20.21 
20~85 
20.34 

I 

1.297 
1.376 
1.478 1.5 

1.6 1.612 

J. jd - 1.0 radlane L. jd = 1.2 radians 

0.1 
0.2. 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 ' 

1.4 
1.5 
1.6 I 

1.001 

1.012 
1.022 
1.035 

1.005 

1.051 
1.072 

0.26 
0.49 
0.78 
1.35 
2.11 
3.21 
4.84 
6.86 
9.36 
12.31 
15.59 
18.94 
22.04 
24.44 
25 69. 
a 4 3  

0.1 1.001 
0.2 * 1.007 
0.3 1.015 
0.4 1.027 
0.5 1.044 
0.6 1.064 
0.7 1.09 
0.8 , 1.121 
0.9 1.159 

1.1 : 1.261 
1.2 1.330 
1.3 , ' 1.414 
1.4 , , 1 1.518 
1.5 1.650 
1.6 1.820 

1.0 / 1.205 

0.22 
0.41 
0.70 
1.13 
1.82 
2.76 

5.49 
9.21 
11.25 
13.21 
14.83 
15-90 
16.17 
15.60 

4.00 

7.24 
1 097 
1.128 
1.166 
1.212 
1.269 
1.340 
1.429 
1.543 
1.692 
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Table 2 (cont.) 

M. @ = 1.3 radians 

0 P <  U(O) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

1.002 
1.007 
1.016 
1.030 
1.047 
1.069 
1 097 
1.130 
1.151 
1.220 
1.280 
1- 352 
1.441 
1 551 
1.689 
1.866 

0.35 
0.42 
0.57 
0.97 
1.46 
2.20 
3.14 
4.29 
5.59 

.\ 7.02 
8.49 
9.85 
10.94 
11.57 
11.66 

N. # = 1.4 radians 

0.1 
0.2 
0. 3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 ' 

1.4 

t 

1.5 
1.6 

1.002 
1.008 
1.017 
1.031 
1.050 
1.073 
1.102 
1.137 
1.179 
1.231 
1.293 
1.368 
1.460 
1 574 
1. n7 
1.899 

11.15 

0.26 
0.36 
0.51 
0.66 
1.05 

2.08 
2.81 
3.66 
4.57 
5.47 
6.3 
6.94 
7.27 
7.28 
6.93 

1.44 

0.1 
0.2 
c. 3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

1 

1.002 
1.008 
1.018 
1.032 
1.051 
1.075 
1.105 
1.141 
1.185 
1.238 
1.302 
1.379 
1.473 
1.590 
1.735 
1.920 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
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TABLE 3 

CHAWCTERISnCS CLASSIF'IED BY INITIAL CONDITIONS (xo,yo, zoJpo,qo) 

1.008 1.420 0.099 8.46 
1.010 1.470 0.098 13.37 
1.012 1.520 0.097 21.81 
1.016 1.570 0.095 33.36 

B. (0.928,o. 188,O. 368, -2.309 -0.054) 

1.016 
1.019 
1.021 
1.024 
1.028 
1.032 
1.038 
1.047 

' ,  

1.211 
1.264 \ 

1.315 
1.366 
1.416 
1.466 
1 515 
1 573 

0.199 6.67 

0.191 11.56 

0.185 20.71 
0.181 27.89 

.0.195 8-24 

0.188 15.41 

0.178 37.10 
0.174 49.79 

C (O.848,O. 262,0.509, -1.542, -0.158) 

1. Ce4 
1.027 
1.031 
1 035 
1 039 
1.044 
1.050 

1.063 
1.072 
1.083 

1.056 

1.062 0.299 
1.118 0.292 
1.173 0.285 
1.227 0.279 
1.279 0.273 
1.330 0.267 
1.380 0.262 
1.429 0.257 
1.477 0.251 

1.572 0.240 
1.525 0.246 

6.16 
7.84 
9.93 
12.54 
15.82 
19 9 97 
25 17 
31  59 
39.27 
48.02 
57-40 

1.036 
1.042 
1. o:+a 
1 053 
1.060 
1.066 
1.074 
1.082 
1.091 
1.102 
1.114 \ 
1.128 \, 

1.012 
1.071 
1.127 
1.182 
1.235 
1.286 
1.337 
1.386 
1.434 
1.481 
1.527 
1 571 

0 398 
0.388 
0.379 
0 370 

0.354 

0.339 
0.331 

0.362 

0.346 

0.324 

0.308 
0.316 

7.56 

11.83 
14.61 

21.90 
26 59 

38.30 
45 23 

9.50 

17: 94 

32.06 

52.64 
60.22 

1.01~8 

1.064 
1 072 
1.080 
1.089 
1.098 
1.108 
1.120 
1.132 
1.146 
1.161 
1 177 

I.. 056 
0.963 
1.0214 
1.083 
1 139 
1 193 

1 295 

1 392 

1.245 

1.344 

1 439 
1.484 
1.529 
1 572 

0. It97 
0.484 
0.472 
0.460 
0.450 
0.439 
0.430 
0.420 
0.411 
0.402 
0.392 

0- 373 
0.383 

8.20 
10.26 ,. 
12.65 

18.62 
15.42 

22.30 
26.49 
31.19 
36 39 

47 93 
53 92 
59 73 

42.02 

F. (0 683,0.467,0.657,-0.930, -0 303) 

1.059 0.914 0.596 8.23 
1.069 0.978 0.579 10.30 
1.079 1.039 0.564 12.66 
1.089 1.097 0.550 15.34 
1.099 1.152 0.537 18.36 
1.110 1.205 0.525 21.74 
1.121 1.256 0.513 25.49 
1.134 1.306 0.502 29.60 
1.147 1.354 0.491 34.04 
1.161 1.400 0.480 38.75 
1.176 1.446 0.469 43.62 
1.193 1.490 0.458 48.52 
1.211 1.532 0.447 53.28 
1.230 1.573 0.436 57.69 

G (0.612,O. 515,O. 702, -0.780, -0.332) 

1.064 0.850 0.700 7.42 
1.077 0.920 0.678 9-38 
1.089 0.985 0.660 11.60 
1.101 1.045 0.643 14.10 
1.114 1.103 0.627 16.87 
1.127 1.157 0.613 19.92 
1.140 1.210 0.599 23.26 
1.154 1.260 0.586 26.75 
,1.169 1.310 0.574 30.68 
1.185 1.356 ,0.562 34.70 
1.202 1.402 0.549 38.82 

i.246 i.&S c.525 lr7.02 
1.260 1.529 0.514 50.85 

1.220 1.446 0.538 42.96 

1.283 _. 1.570 0.502 52.34 

! 
1 
1 

1 I .  

1 

r 
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E* (0. 535,0.550, 0.745, -0.648, -0.351) 
P 0 B V ( O )  

1.070 0.800 0.800 6.70 
1.085 0.875 a 7 7 4  8.56 
1.099 0.943 0.752 10.67 
1.114 1.037 0.733 13.03 
1.128’ 1 . ~ 6 6  0.715 15.62 
1.143 1.123 0.699 18.44 
1.159 1.176 0.6@+ 21.48 
1.175 1.228 0.669 24.72 

1.211 1.324 0.642 31.55 
1.230 1.370 0.629 35.22 
1.250 1.414 0.616 3 8 . b  

1.294 1.497 0.591 45.65 
1.328 1.536 “.0.579 48.74 

1.192 1.277 0.655 28.11 

1.271 1.456 0.604 42.31 

1.343 1.574 0.566 31.50 

I - (0 512,0.645,1.096, -0.616, -0.405) 

1.104 
1.123 
1.142 
1.162 
1.181 
1.201 
1.222 
1.24b 
1.267 
1.291 
1.316 
1 343 
1 370 
1.399 
1.429 

0.880 
0.950 
1.014 
1.074 
Y .  130 
1.184 
1.234 
1 283 
1 * 329 
1.373 
1.415 
1.456 
1.495 
1.543 
1.568 

0.889 

0.844 
0.826 
0.808 

0.762 

0.865 

0 792 
0.777 

0.748 
0 735 
0.722 
0 709 

0.683 
0.696 

0.671 

9.06 
11.16 

15 98 
18.65 

13.48 

21.45 
24.35 
27-32 
30.31 
33.27 
36 17 
38.94 
41 - 55 
43 95 
46.11 

1.128 
1.152 
1.176 

1.225 
1.25; 
1.277 
1.304 
1.333 
1.362 
1.393 
1.424 
1.457 
1.491 

1.200 

1.527 

0.900 
0.970 
1.034 
l.cr34 
1.149 
1.202 
1.251 
1.298 
1.343 
1.385 
1.427 
1.464 
1.501 

1 570 
1.536 

1.000 
0 976 
0.955 
0.936 
0.919 
0 * 903 
0.888 
0.874 
0.860 
0.847 
0.834 
0.822 
0.809 
0 * 797 
0.786 

9.42 
11.41 
13 - 57 
15 87 
18.28 
20.74 
23 * 25 
25.74 
28.20 
30.59 
32.88 
35.04 
37 07 
38.91 
40.59 

1.182 
1.211 
1.240 
1 270 
1.301 
1 - 332 
1.365 
1.400 

1.469 
1.506 
1.544 
1.584 
1.624 

1.433 

0.991 
1 055 
1.113 
1.168 
1.219 
1.268 
1.313 
1.356 
1 397 
1.436 
1 473 
1.508 
1 547 
1 572 

1.087 
1.067 
1.050 
1.034 
1.019 
1.005 
0 992 
0 979 
0.967 
0.956 
0.944 
0.934 
0 . g u  
0.913 

1.206 
1.238 
1.272 
1.306 
1.342 
1 378 

. 1.415 
1.453 
1 493 
1.533 
1 575 
----,  1.617 
1.661 
1.706 

1.000 
1.064 
I. 122 
1.177 
1.228 
1 275 
1.320 
1.362 
1.402 
1 439 
1 475 
1.508 
1.540 
1.570 

1.200 
1.182 
1.167 
1.153 

1 139 
1.117 
1.106 
1.096 
1.086 
1 077 
1.068 
1.059 

1.140 

1 051 

9.49 
10 * 97 
12.52 
14.11 
15 70 
17.28 
18.81 
20.28 
21.68 
22 95 
24.24 
25 39 
26.45 
27.43 

I\, .93 
12. u-- 
14.79 
16.82 
18.87 
20.92 
22.92 
24.86 
26-73 
28.49 

31  69 
30.15 

33 11 
34 38 

- -1 
1 

1 
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Tables 2 and 3 give coordinates of selected points on 

constant-+ and characteristic contours, respectively. 

Let us define an angle $ such that 

- h is known, and the Sradient of f is calculated numeri- 
tally from (p,B,bp/aB,ap/aP) or (p,q) at the point in 

question, depending upon which representation is more 

convenient. The value of $ is also listed in Tables 2 

and 3 .  The light dashed line in Figs. 5 and 6 is ths 

boundary of the region of the magnetopause over which 

5 loo. The line composed of alternating dots and dashes 

marks the boundary for JI 5 25O. 

A s  expected, w e  find that agreement with the con- 

finement condition ( $  = 0 )  worsens as we move away from 

the magnetosphere apex. However, the values of $ are 

sufficiently small over a significantly large region of 

the nagnetosphere, that we assume our approximation to 

be valid. 

exceeds the tangential field by only 10%. 

fie16 ,sed here is probably larger than the actual field; 

Even in the case that $ = 25O, the total field 

The induced 

(. 

it is expected that the surface derived here is an upper 

limit to the actual soZution of the idealized problem. 

In this approximation, the magnetosphere may be 

represented by the empirical formula 
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a(+) = ( 8 / 5 )  sin ( 7 + / 5 )  , 

a ( * )  = ( @ / 4 )  sin (15P/8) , 
( o ~ ~ L - w z ,  O C ~ S W O )  

to within 4%. 

A convenient representation for the intersection 

of the magnetosphere and the xy-plane is given by 

y2 = 0.2263 p 5 I 3  (p3 - 1) , 

2 where p Comparison with the z = 0.00 contour 

of Fig. 2 shows that E q .  ( 6 8 )  is accurate to within 0.2%. 

These calculations may be performed for higher-order 

= x2 + y2. 

congruence approximations without any fundamental- change in 

che method illustrated here. Additional refinement would 

allow us to begin the extension further downstream; by 

adding terms to the extension formula, Eq. ( 4 5 ) ,  we should 

be able to match the upstream and downstream fields more 

closely. 

the fields inside the magnetosphere, and allow us to 

extend the three-dimensional surface further downstream. 

Ultimately, one could use the surface so obtained as the 

first trial in a three-dimensional relaxation calculation 

(Cartzsian coordinates). If the accuracy of the co-location 

and extension is sufficient, this last step could be omitted. 

This would give an improved approximation to 
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